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1. Introduction

The study of q-analogues of the Cartan domains (irreducible bounded symmetric domains)
was initiated by Sinel’shchikov and Vaksman in [SV]. In particular, for each Cartan
domain they defined the ∗-algebra Pol(g−1)q , a q-analogue of the polynomial algebra on the
prehomogeneous vector space g−1, and set a problem on investigation of their representations.
The theory of representations of the ∗-algebras corresponding to domains of rank 1 is well
understood. In this paper our purpose is to study such representations for one of the popular
Cartan domains of rank 2, the matrix ball in the space Mat2,2 of complex 2 × 2 matrices.
Following [SSV] we will denote this ∗-algebra by Pol(Mat2,2)q . A description of Pol(Matm,n)q ,
m, n ∈ N, in terms of generators and relations is given in [SSV]. In this paper we classify
all irreducible representations of Pol(Mat2,2)q by bounded operators on a Hilbert space. The
method which we use here is based on the study of a dynamical system arising on a spectrum
of a commutative ∗-subalgebra of Pol(Mat2,2)q (see [OS]). Note that the ∗-algebra also has
unbounded ∗-representation. One can easily define a ‘well behaved’ class of such unbounded
representations and classify them up to unitary equivalence using the same technique. Finally
we determine those representations of Pol(Mat2,2)q which are induced by representations of
the ∗-algebra Pol(S(U))q , a q-analogue of the polynomial algebra on the Shilov boundary.
The last algebra was introduced in [V].

In this paper we use the following standard notations: R is the set of real numbers, R
+

is the set of non-negative real numbers, Z denotes the set of integers, Z
+ = {0, 1, 2, . . .},

N = {1, 2, . . .}.
0305-4470/01/102063+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2063
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2. The ∗-algebra Pol(Mat2,2)q and its ∗-representations

Let q ∈ (0, 1). The ∗-algebra Pol(Mat2,2)q , a q-analogue of polynomials on the space Mat2,2 of
complex 2×2 matrices, is given by its generators {zαa }a=1,2;α=1,2 and the following commutation
relations:
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1
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1
1 z1

2z
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1
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2
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∗
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(3)

An algebra which is generated by {zαa }a=1,2;α=1,2 and relations (1) will be denoted by C(Mat2,2).
This algebra is a q-analogue of the algebra of holomorphic polynomials in the vector space
Mat2,2.

Consider a representation π of Pol(Mat2,2)q on a separable Hilbert space H by
bounded operators. The theorem below gives the complete classification of such irreducible
representations up to unitary equivalence.

Theorem 1. Any irreducible representation π is unitarily equivalent to one of the following
six series:

(1) one-dimensional representations ξϕ1,ϕ2

ξϕ1,ϕ2(z
1
1) = q−1eiϕ1 ξϕ1,ϕ2(z

1
2) = ξϕ1,ϕ2(z

2
1) = 0 ξϕ1,ϕ2(z

2
2) = eiϕ2

ϕi ∈ [0, 2π)
(4)

(2) infinite-dimensional representations πϕ on H = l2(Z
+)

πϕ(z
1
1)ek = q−1

√
1 − q2(k+1)ek+1

πϕ(z
2
2)ek = eiϕek πϕ(z

1
2) = πϕ(z

2
1) = 0

ϕ ∈ [0, 2π)

(5)

(3) infinite-dimensional representations ρϕ1,ϕ2 on H = l2(Z
+)

ρϕ1,ϕ2(z
1
1)ek = −ei(ϕ1+ϕ2)q−1

√
1 − q2kek−1

ρϕ1,ϕ2(z
1
2)ek = eiϕ1qkek

ρϕ1,ϕ2(z
2
1)ek = eiϕ2qkek

ρϕ1,ϕ2(z
2
2)ek =

√
1 − q2(k+1)ek+1

ϕi ∈ [0, 2π)

(6)
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(4a) infinite-dimensional representations ρ1
ϕ on H = l2(Z

+ × Z
+)

ρ1
ϕ(z

1
1)em,k = −eiϕq−1

√
1 − q2(m+1)

√
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1
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2
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(7)

(4b) infinite-dimensional representations ρ2
ϕ on H = l2(Z

+ × Z
+)

ρ2
ϕ(z

1
1)em,k = −eiϕq−1

√
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2
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(8)

(5) infinite-dimensional representations ρ̂ϕ on H = l2(Z
+ × Z

+ × Z
+)

ρ(z1
1)em,l,k = eiϕqm+lem,l,k − q−1

√
(1 − q2(l+1))(1 − q2(m+1))(1 − q2k)em+1,l+1,k−1

ρ(z1
2)em,l,k = qk

√
1 − q2(m+1)em+1,l,k

ρ(z2
1)em,l,k = qk

√
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ρ(z2
2)em,l,k =

√
1 − q2(k+1)em,l,k+1

ϕ ∈ [0, 2π)

(9)

(6) the infinite-dimensional representation ρ on H = l2(Z
+ × Z

+ × Z
+ × Z

+)

ρ(z1
1)es,m,l,k = qm+l

√
1 − q2(s+1)es+1,m,l,k

−q−1
√
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√
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√
1 − q2(k+1)es,m,l,k+1.

(10)

Proof. Let us consider a ∗-subalgebra B of Pol(Mat2,2)q which is generated by z1
2, z2

1, z2
2

and (z1
2)

∗, (z2
1)

∗, (z2
2)

∗. Direct computation shows that z1
2(z

1
2)

∗, z2
1(z

2
1)

∗, z2
2(z

2
2)

∗ generate a
commutative ∗-subalgebra of B and satisfy the following relations:

(zαa (z
α
a )

∗)zβb = z
β

bF
βα

ba (z
1
2(z

1
2)

∗, z2
1(z

2
1)

∗, z2
2(z

2
2)

∗) (11)

where (α, a), (β, b) ∈ {(1, 2), (2, 1), (2, 2)} and

F21(x1, x2, x3) = (F 11
22 (x1, x2, x3), F

12
21 (x1, x2, x3), F

12
22 (x1, x2, x3))

= (q2x1 − (1 − q2)(x3 − 1), x2, x3)

F12(x1, x2, x3) = (F 21
12 (x1, x2, x3), F

22
11 (x1, x2, x3), F

22
12 (x1, x2, x3))

= (x1, q
2x2 − (1 − q2)(x3 − 1), x3)

F22(x1, x2, x3) = (F 21
22 (x1, x2, x3), F

22
21 (x1, x2, x3), F

22
22 (x1, x2, x3))

= (q2x1, q
2x2, q

2(x3 − 1) + 1).
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The functions F21, F12, F22 : R
3 → R

3 define an action of Z
3 on R

3 with orbits

�x1,x2,x3 = {F(m)
21 (F

(l)
12(F

(k)
22 (x1, x2, x3)))

= (q2k(q2mx1 − (1 − q2m)(x3 − 1)), q2k(q2lx2 − (1 − q2l)(x3 − 1))

×q2k(x3 − 1) + 1),m, l, k ∈ Z}.
Here and in the following we denote by F

(m)
aα the mth iteration of Faα and (F(m)

aα )i ,
i = 1, 2, 3, the ith coordinate of F

(m)
aα . Let π be a ∗-representation of Pol(Mat2,2)q on a Hilbert

space H by bounded operators, let E(·) be the resolution of the identity for the commutative
family Aπ of the positive operators π(z1

2)π(z
1
2)

∗, π(z2
1)π(z

2
1)

∗, π(z2
2)π(z

2
2)

∗ and let σπ be the
joint spectrum of the family Aπ .

The next step is to show that any irreducible representation is concentrated on an orbit of
this dynamical system.

Lemma 1. If π is an irreducible representation of Pol(Mat2,2)q then the spectral measure E(·)
is ergodic with respect to the action of the dynamical system generated by F21, F12, F22 and
there exists an orbit �x1,x2,x3 such that E(�x1,x2,x3) = I .

Proof. From (11) and the spectral theorem it follows that

E(�)π(z
β

b ) = π(z
β

b )E(F
(−1)
bβ (�))

E(�)π(z
β

b )
∗ = π(z

β

b )
∗
E(Fbβ(�))

for any � ∈ B(R3) (Borel sets). Hence any subset � such that F
(−1)
bβ (�) ⊆ �, Fbβ(�) ⊆ �,

(b, β) = (2, 1), (1, 2), (2, 2), defines a subspace E(�)H which is invariant with respect to
the operators π(zβb ), π(z

β

b )
∗ for any (b, β) as above. Moreover, such a subspace is invariant

with respect to any operator of the representation π . In fact, the following relations hold in
Pol(Mat2,2)q :

zαa (z
α
a )

∗z1
1 = z1

1z
α
a (z

α
a )

∗ − (−1)a+α(q − q−1)z1
2z

2
1(z

2
2)

∗ (12)

(a, α) = (2, 1), (1, 2), (2, 2), which gives

E(R3 \ �)π(zαa (z
α
a )

∗)π(z1
1)E(�) = E(R3 \ �)π(z1

1)π(z
α
a (z

α
a )

∗)E(�)

−(−1)a+α(q − q−1)E(R3 \ �)π(z1
2)π(z

2
1)π(z

2
2)

∗
E(�).

Therefore if � ∈ B(R3) is invariant with respect to all F
(−1)
bβ and Fbβ we obtain

π(zαa (z
α
a )

∗)E(R3 \ �)π(z1
1)E(�) = E(R3 \ �)π(z1

1)E(�)π(zαa (z
α
a )

∗)

and hence

E(�′)E(R3 \ �)π(z1
1)E(�) = E(R3 \ �)π(z1

1)E(�)E(�′)

for any �′ ∈ B(R3). Taking �′ = � gives E(R3 \ �)π(z1
1)E(�) = 0, i.e. π(z1

1)E(�)H ⊆
E(�)H . Similarly, π(z1

1)
∗
E(�)H ⊆ E(�)H . The ergodicity of the measure E(·) follows

immediately; i.e., E(�) = I or 0 for any Borel � which is invariant with respect to Fbβ , F
(−1)
bβ .

The simplest invariant sets are the orbits of the dynamical system. The next step is to show
that only atomic measures concentrated on an orbit give rise to an irreducible representation
of the ∗-algebra. It is easily seen that the dynamical system generated by Fbβ is one to one
and possesses a measurable section, i.e. a set τ ∈ B(R3) which intersects any orbit in a single
point. This implies that any ergodic measure is concentrated on a single orbit of the dynamical
system and therefore E(�x1,x2,x3) = I for some orbit �x1,x2,x3 . �

We now clarify which orbits �x1,x2,x3 give rise to bounded irreducible representations π ,
i.e. σπ ⊆ �x1,x2,x3 , and classify all such representations up to unitary equivalence.
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We claim first that there is no bounded representation π with σπ ⊆ �x1,x2,x3 if x3 > 1.
From (11) we have

π(z
β

b )Hx ⊆ HFbβ (x) π(z
β

b )
∗Hx ⊆ H

F
(−1)
bβ (x)

(13)

where Hx is the eigenspace for Aπ corresponding to the eigenvalue x ∈ R
3. Since

y = (y1, y2, y3) ∈ �x1,x2,x3 , where x3 > 1, which implies that y3 > 1 we conclude that
π(z2

2)π(z
2
2)

∗ � 1 and ker π(z2
2) = ker π(z2

2)
∗ = {0}. This clearly forces F

(k)
22 (y) ∈ σπ for any

k ∈ Z. However, the set {F(k)
22 (y), k ∈ Z} is unbounded, which contradicts the boundedness of

the representation π . Similar arguments show that there is no bounded representation π with
σπ ⊆ �x1,x2,1, x1 �= 0 or x2 �= 0. In this case �x1,x2,1 = {(q2(k+m)x1, q

2(k+l)x2, 1), k, l, m ∈ Z}.
The only possibility is σπ = �0,0,1 = {(0, 0, 1)} and in this case we obtainπ(z1

2) = π(z2
1) = 0,

π(z2
2)π(z

2
2)

∗ = I . It follows now from (1)–(3) that π(z2
2), π(z

1
1) satisfy the relations

π(z1
1)

∗π(z1
1) = q2π(z1

1)π(z
1
1)

∗ + (q−2 − 1)
[π(z1

1), π(z
2
1)] = 0 [π(z1

1)
∗, π(z2

1)] = 0
π(z2

2)
∗π(z2

2) = π(z2
2)π(z

2
2)

∗ = I.

(14)

This implies that π(z2
2) commutes with all images of the generators in the algebra under the

representation π and therefore π(z2
2) is a multiple of the identity operator if π is irreducible.

By (14) we have also π(z2
2) = eiϕ2I , ϕ2 ∈ [0, 2π). Irreducible representations of the relation

(z1
1)

∗z1
1 = q2z1

1(z
1
1)

∗ + (q−2 − 1) are well known and can be easily calculated using the
method of dynamical systems (see [OS, Chapter 2]). Any such representation is either one
dimensional, ξϕ1(z

1
1) = q−1eiϕ1 , ϕ1 ∈ [0, 2π), or infinite dimensional, which is unitarily

equivalent to the following one: πϕ(z
1
1)ek = q−1

√
1 − q2(k+1)ek+1. The corresponding

irreducible representations of Pol(Mat2,2)q are ξϕ1,ϕ2 and πϕ .
Since σπ ⊆ (R+)3 and (F

(k)
22 )3(x1, x2, x3) = q2k(x3 − 1) + 1 → −∞ as k → −∞, it

follows from (13) that ker π(z2
2)

∗ �= {0}, ker π(z2
2)π(z

2
2)

∗ �= {0} and the corresponding orbit
contains a point (x1, x2, 0). We have �x1,x2,0 = {(q2k(q2m(x1 − 1) + 1), q2k(q2l(x2 − 1) +
1), 1−q2k),m, l, k ∈ Z}. Similar arguments show that σπ ⊆ �x1,x2,0, where x1 > 1 or x2 > 1,
is impossible if the representation π is bounded. From the positiveness of σπ we also obtain
that the only orbits corresponding to the irreducible representation of the ∗-algebra are �1,1,0,
�1,0,0, �0,1,0, �0,0,0 and �0,0,1. The last one was treated above.

We consider now the case σπ ⊆ �x1,x2,x3 , x3 = 0. Let Py , y ∈ R, be the projection onto
the eigenspace corresponding to the eigenvalue y. Using (12) we get

(zk − yk)Pzπ(z
1
1)Py = ±(q − q−1)Pzπ(z

1
2)π(z

2
1)π(z

2
2)

∗Py

(‘+’ for k = 1, 2 and ‘−’ for k = 3) for z, y ∈ R
3. By (13) we have π(z1

2)π(z
2
1)π(z

2
2)

∗Hy ⊆
H

F21(F12(F
(−1)
22 (y)))

and

π(z1
2)π(z

2
1)π(z

2
2)

∗Py = P
F21(F12(F

(−1)
22 (y)))

π(z1
2)π(z

2
1)π(z

2
2)

∗Py.

Setting Pm,l,k as the projection onto an eigenspace which corresponds to the eigenvalue
F
(m)
21 (F

(l)
12(F

(k)
22 (x1, x2, 0))) we obtain

π(z1
1)Pm,l,k = Pm,l,kπ(z

1
1)Pm,l,k + Pm+1,l+1,k−1π(z

1
1)Pm,l,k

i.e.

π(z1
1)Hm,l,k ⊆ Hm,l,k ⊕ Hm+1,l+1,k−1.

Moreover, Pm+1,l+1,k−1π(z
1
1)Pm,l,k = −q1−2kπ(z1

2)π(z
2
1)π(z

2
2)

∗Pm,l,k . The operator π(z1
1) can

be written as a sum of its diagonal part π(z1
1)0 = ∑

m,l,k Pm,l,kπ(z
1
1)Pm,l,k , and the operator

− ∑
m,l,k q

1−2kπ(z1
2)π(z

2
1)π(z

2
2)

∗Pm,l,k = −qπ(z1
2)π(z

2
1)π(z

2
2)

∗(1 − π(z2
2(z

2
2)

∗))−1.
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Now let σπ ⊆ �x1,x2,0, where x1 �= 0 or x2 �= 0. It follows from (1)–(3) by direct
computation that

π(z1
1)

∗
0π(z

1
1)0 = q2π(z1

1)0π(z
1
1)

∗
0.

The only bounded operator π(z1
1)0 satisfying this relation is the zero operator. Therefore

π(z1
1) = −qπ(z1

2)π(z
2
1)π(z

2
2)

∗(1 − π(z2
2(z

2
2)

∗))−1

and π is irreducible iff so is the family (π(z1
2), π(z

2
1), π(z

2
2), π(z

1
2)

∗, π(z2
1)

∗, π(z2
2)

∗). Let
π(zαa ) = Uα

a

√
π(zαa )

∗π(zαa ) be the polar decomposition of π(zαa ). Using simple arguments

one can show that [Uα
a , U

β

b ] = [(Uα
a )

∗, Uβ

b ] = 0, (a, α) �= (b, β) and

(zαa (z
α
a )

∗)(Uβ

b ) = (U
β

b )F
βα

ba (z
1
2(z

1
2)

∗, z2
1(z

2
1)

∗, z2
2(z

2
2)

∗).

Here (a, α), (b, β) ∈ {(1, 2), (2, 1), (2, 2)}. Moreover, if σπ ⊆ �1,x2,0 (σπ ⊆ �x1,1,0) we
have U 1

2 (U 2
1 respectively) commutes with any operators from the family Aπ and therefore

with any operator of the representation. This clearly forces U 1
2 = eiϕ1I , ϕ1 ∈ [0, 2π)

(U 2
1 = eiϕ2I , ϕ2 ∈ [0, 2π) respectively). Let σπ ⊆ �0,1,0. Consider ek,l = (U 1

2 )
k(U 2

2 )
le,

e ∈ ker π(z2)π(z
2
2)

∗ ∩ ker π(z1
2)π(z

1
2)

∗, k, l ∈ Z
+. Then {ek,l, k, l ∈ Z

+} is an orthonormal
system which defines an invariant subspace. The corresponding irreducible representation is
ρ2
ϕ . Analogously (U 2

1 )
k(U 2

2 )
le = ek,l , e ∈ ker π(z2)π(z

2
2)

∗ ∩ker π(z2
1)π(z

2
1)

∗, k, l ∈ Z
+, build

an orthonormal basis of an irreducible representation space if σπ ⊆ �1,0,0; the corresponding
action is given by formulae (8). If σπ ⊆ �1,1,0 we have that l.s.{(U 2

2 )
ke = ek, k ∈ Z

+},
e ∈ ker π(z2

2)π(z
2
2)

∗, is invariant with the corresponding action given by (6).
We now turn to the case σπ ⊂ �0,0,0. From (1)–(3) we have

π(z1
1)0π(z

2
1) = qπ(z2

1)π(z
1
1)0 π(z1

1)
∗
0π(z

2
1) = qπ(z2

1)π(z
1
1)

∗
0

π(z1
1)0π(z

1
2) = qπ(z1

2)π(z
1
1)0 π(z1

1)
∗
0π(z

1
2) = qπ(z1

2)π(z
1
1)

∗
0

π(z1
1)0π(z

2
2) = π(z2

2)π(z
1
1)0 π(z1

1)
∗
0π(z

2
2) = π(z2

2)π(z
1
1)

∗
0

π(z1
1)

∗
0π(z

1
1)0Pm,l,k = q2π(z1

1)0π(z
1
1)

∗
0Pm,l,k + (1 − q2)q2(m+l)Pm,l,k.

Note that π(z1
1)0Pm,l,kH ⊆ Pm,l,kH , π(z1

1)
∗
0Pm,l,kH ⊆ Pm,l,kH . Moreover, it follows from

the above relation that if π is irreducible then the family (π(z1
1)0, π(z

1
1)

∗
0) restricted to the

subspace Pm,l,kH is irreducible for any m, l, k ∈ Z
+. We have

a∗a = q2aa∗ + (1 − q2)

where a = π(z1
1)0P0,0,0. Any irreducible family (a, a∗) is either one dimensional and given

by a = eiϕ , ϕ ∈ [0, 2π), or infinite dimensional defined on l2(Z
+) by aes =

√
1 − q2(s+1)es+1.

These representations give rise to irreducible representations of the ∗-algebra Pol(Mat2,2)q .
Namely, in the first case we have that em,l,k = (U 1

2 )
m(U 2

1 )
l(U 2

2 )
ke, where e ∈ P0,0,0H =

ker π(z2
2)π(z

2
2)

∗ ∩ ker π(z2
1)π(z

2
1)

∗ ∩ ker π(z1
2)π(z

1
2)

∗, m, l, k ∈ Z
+, define an orthonormal

basis of the space where the irreducible representation ρ̂ϕ acts, and for the second irreducible
family we have that es,m,l,k = (U 1

2 )
m(U 2

1 )
l(U 2

2 )
kes , s,m, l, k ∈ Z

+, define an orthonormal
basis of the space where the irreducible representation ρ acts. This completes the proof. �

Comments. It follows from the proof that for any representation π on a Hilbert space Hπ the
family of self-adjoint operators π(z2

2(z
2
2)

∗), π(z1
2(z

1
2)

∗), π(z2
1(z

2
1)

∗), π(z1
1)0π(z

1
1)

∗
0, where

π(z1
1)0 = π(z1

1) −
{

0 π(z2
2(z

2
2)

∗) = I

−qπ(z1
2)π(z

2
1)π(z

2
2)

∗(1 − π(z2
2(z

2
2)

∗))−1 π(z2
2(z

2
2)

∗) �= I
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generates a commutative ∗-subalgebra A in B(Hπ), the bounded linear operators on Hπ .
Moreover, any irreducible representation of Pol(Mat2,2)q is a weight representation with
respect to this algebra, i.e. A can be diagonalized, and the spectrum of A is simple.

A question which arises here is how to generalize the method to higher-dimension matrix
balls and classify ∗-representations of the corresponding ∗-algebras. In principle, just by
analysing the commutation relations between the generators in the ∗-algebra one can find
a commutative ∗-subalgebra of Pol(Matm,n)q or one of its localizations and show that any
irreducible representation π is a weight representation with respect to this commutative ∗-
algebra having a simple spectrum in this representation. However, the computations can be
extremely difficult in general.

Remark 1. The polynomial algebra on the vector space Mat2,2 can be supplied with a Poisson
structure. Writing q = e−h we have that Pol(Mat2,2)exp (−h) is an associative algebra over the
ring of formal series C[[h]] and

Pol(Mat2,2) � Pol(Mat2,2)exp (−h)/hPol(Mat2,2)exp (−h).

The Poisson bracket is now given by

{a mod h, b mod h} = −ih−1(ab − ba) mod h

for any a, b ∈ Pol(Mat2,2)exp (−h). The problem now is to define the symplectic leaves of
this Poisson structure. Any primitive ideal ker π , where π is an irreducible representation of
Pol(Mat2,2)q , defines a maximal Poisson ideal Iπ = ker π mod h of the algebra Pol(Mat2,2)
ordered by inclusion and hence the closure of a symplectic leaf which is given by {x ∈
Mat2,2 | f (x) = 0, f ∈ Iπ }. As in the case of C(SU(n))q (see [SoV]) one can expect that
there is a one-to-one correspondence between irreducible representations (bounded irreducible
representations) of Pol(Mat2,2)q and symplectic leaves (bounded symplectic leaves) in Mat2,2.

3. Representations of Pol(Mat2,2)q and the Shilov boundary of the matrix ball

It is known that the Shilov boundary S(U) of the matrix ball U = {z ∈ Matm,m | z∗z < 1}
is the set of all unitary m × m matrices. A q-analogue Pol(S(U))q of the polynomial
algebra on the Shilov boundary of U was introduced in [V] and shown to be isomorphic
to C(Un)q = (C(Gln)q, ∗), the algebra of regular functions on the quantum group Un (see,
e.g., [ChP]). We recall that C(Gl2)q is the localization of the algebra C(Mat2,2)q with respect
to the multiplicative system (detq z)N, where detq z is the quantum determinant z1

1z
2
2 − qz1

2z
2
1.

For m = 2 the ∗-algebra Pol(S(U))q is equal to (C(Gl2)q, ∗), where the involution ∗ is as
follows (

(z1
1)

∗ (z1
2)

∗

(z2
1)

∗ (z2
2)

∗

)
= (z1

1z
2
2 − qz1

2z
2
1)

−1

(
q−2z2

2 −q−1z2
1

−q−1z1
2 z1

1

)
.

We define ψ : Pol(Mat2,2) �→ Pol(S(U))q by setting ψ(zαa ) = zαa . By [V][theorem 2.2],
ψ can be uniquely extended to a ∗-homomorphism of these ∗-algebras. Therefore, ψ is
considered as a q-analogue of the restriction operator of polynomials to the Shilov boundary.
The isomorphism Pol(S(U))q � C(U2)q is given by τ : zαa �→ qα−2zαa , a, α = 1, 2. It is clear
that any representation π of C(U2)q generates a representation π ′ = π ◦ τ ◦ ψ of the algebra
Pol(Mat2,2)q . We have the following proposition.

Proposition 1. The only irreducible representations of Pol(Mat2,2)q which are induced by a
representation of C(U2)q are ξϕ1,ϕ2 and ρϕ1,ϕ2 for any ϕ1, ϕ2 ∈ [0, 2π).

Proof. Follows by direct verification. �
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